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OSCILLATIONS OF A RIGID BODY CONTAINING AN 
ELASTIC ELEMENT WITH DISTRIBUTED PARAMETERS? 

L. D. AKULENKO 

Moscow 

The motions of a hybrid (discrete-continual) system, consisting of a carrier rigid body and an elastic element 

with distributed parameters fastened to it are investigated. Two types of fastening are considered: (1) both 

ends are clamped, and (2) one of the ends is clamped while the other is free. A closed system of 

integro-differential equations is obtained which describes the state of the system under arbitrary initial 

conditions and forces applied to the rigid body. The perturbed motion of the rigid body in the case of a 

quasi-linear restoring force is investigated using asymptotic methods. The motions are studied both when 

there is internal resonance between the oscillations of the rigid body and the natural oscillations of the 

element, and when there are no such resonances. Qualitative effects are found. 

1. FORMULATION OF THE PROBLEM 

THE UNIAXIAL motions (along the OX axis) of a hybrid (discrete-continual) system, shown 
schematically in Fig. 1, are investigated. Here 0 is the origin of the fixed (inertial) reference frame, 
and s is the coordinate of the rigid body to which the movable system ox is connected. An elastic 
element with distributed parameters (a beam or a spring) is fastened to the carrier rigid body; the 
boundary conditions of the attachment will be discussed below. Suppose we are given arbitrary 
initial conditions of motion-the values of the coordinates and the velocity of the rigid body and also 
the distribution of the ~splacements and the velocities of an elastic section at a certain fixed instant 
of time to_ It is required to investigate the motion of the rigid body and the relative motions of the 
element when a concentrated force P, external with respect to the system and dependent on the 
time t and on the phase variables s and s’, is applied to the carrier body. 

In order not to complicate the description, we will assume that the density per unit length p and 
the rigidity to compression CT are constant (see the note at the end of Sec. 2). Assuming the 
deformations to be fairly small, we can write the following equations of state for the elastic element 

[II 
w ** = uu” - ps”, u =u(t, x), O<x<I (1.1) 

Here u is the relative elastic displacement of the section x, 06.x d E at the instant t, t3 to. We will 
consider two types of boundary conditions: (1) both ends of the elastic element are clamped 

U(f, O)=u(r, l)=O, t > t() ff.2) 

l-l s x 
FIG. 1. 
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and (2) one of the ends, say the left one, is clamped while the right one is free 

u(t, 0) =u’(t, I) = 0, 1 2 to ( I .i) 

If the right end is clamped while the left one is free (,u’(f, 0) = u(t, I) = 0). this case can be 
reduced to (1.3) by making the substitution s = I-y, 12~ 30. The problem of determining the 
unknown 14 = u(f,x) will be closed if the motion s = ~({)---a twice continuously differentiahlc 
function. is known and the initial distributions II (lo, .Y ). rr’(&,, X) are specified 

u(to, x) =f@), zf- (to, x) =g{x), 0 Qx <;I i t .i) 

wherefand g are fairly smooth functions of a definite class [ I. 21. In the case of boundary conditions 
(1.2), the functions f(x) and g(x) must vanish when x = 0.1: for the case of conditions (1.3) they 
only vanish when x = 0. 

The unknown s = s(t) can be found by the simultaneous solution of the boundary value problem 
(I. l)-( 1.3) with initial conditions (1.4) and Cauchy’s problem for the integro-differential equation 
describing the motion of the centre of mass of the system (a Newton-type equation) 

s(t0) = SO, s ‘(to) = u” 

It is proposed to solve the combined problem (1.1)-f 1.5) successively: first problem f 1. I )-( t .4) is 
solved for an arbitrary displacement of the rigid body I from the required class of twice 
continuously differentiable functions. The function u(t, .Y, [s”j) represented in the form of the 
integral operator s”(t) is substituted into (1.5) and a closed Cauchy integro-differential problem ol 
the Volterra type in t [3.6] for the variable s is obtained, which is to be determined. 

Using Eq. (1. l), the Cauchy integro-differential problem (1.5) can be reduced to a more- 
convenient form, not containing the integral with respect to x 

ms” = P(& S, s’ ) - cm’ (t, x, [s” ] ) 1 “x ; :, 
i,l.hj 

s(to) = so, s’ (to) = u” 

Hence, the equation of motion of the centre of mass of the hybrid system in the form (1.5) or (1.6) 
is then used to determine the coordinate s(r), which defines the motion of the rigid body (the point 
0). If the solution s(t) is constructed, the remaining characteristics of the motion of the whole 
system can be found fairly simply by using standard operations. Hence, our main attention will bc 
devoted to deriving the Cauchy integro-differential problem for s in explicit form. and constructing 
and analysing the solution when a number of simplifying assumptions, which have a definite 
mechanical meaning, are satisfied. 

Further, for convenience, we will change to dimensionless variables, arguments and parameters 
using the following formulae 

8 = vt, Z.-J =0/(p12j, x=@ 

s=qI, u=zI, $E [O, I] 
(I.71 

We will again denote derivatives with respect to the new arguments of time Ha A,, and coordinate 
[, tlS[< 1 by dots and primes, respectively. As a result, we obtain a combined problem in the 
unknowns z = ~(6, 6) and q - ~(0) 
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The functions cp, q5 and rr are obtained fromf, g and P, respectively, by making the change (1.7), 
while the parameter E represents the effect of the elastic element on the motion of the carrier body. 
Other methods of changing to dimensionless variables are also possible, dictated by convenience 
and the nature of the problem. It is preferable, in our further investigations, to use the changes (1.7) 
to construct and analyse the solution of problems (1.8) and (1.9). 

2. SOLUTION OF THE BOUNDARY VALUE PROBLEMS FOR KNOWN MOTION OF THE 

CARRIER BODY 

The required distribution of elastic displacements z (8,(), which satisfy boundary conditions 1 and 
2 of problem (1.8) for the continuous function n”(0)), 0E [& , e*], e* s m , can be constructed by 
standard methods of mathematical physics [l, 21. As a result, we obtain the expressions 

r(e, 0 = jr o,(e) ~~(0, E:,(o = sin&t (2.1) 
= 

1) An =7m; 2) x, = %7r(2n - l), n>l 

Here {A,), {&GE)> are systems of eigenvalues and eigenfunctions of the corresponding boundary 
value problems. 

The Fourier coefficients 0, (e), n 3 1 in (2.1) are obtained as the solutions of a denumerable set of 
Cauchy problems of the form 

0; + I@,, = -d,v”, v, = A,,, n = 1,2, . . . (2.2) 

on(eO)=cp,, o;,(eO)=J/,; ~)v,=Tvz, 2)vn=?47r(2n- I) 

Here rp,, I,$, (n 2 1) are the Fourier coefficients for the expansions of the functions (p(t), (c1(@ in 
the basis functions S:,(r), and v, are the eigenfrequencies (v, = A,). The coefficients d,, in (2.2) 
determine the sensitivity of each mode with respect to the external kinematic “action” 7”. We have 
the following expressions 

(Pi = 2 ;P@ sin&&G, $, = 2 .I! NE) sin A,, Idt; 
0 0 

d, = 2; sin A, EdE; 
(2.3) 

l)d, 
0 

=; [I -(-OnI, 214, =,(2,4_ 1) 

It follows from (2.3) that in the case of boundary conditions (1.2), corresponding to the clamped 
ends of the elastic element [case 1 in (1.8)], the motion of the carrier body has no effect on the even 
modes of oscillation O,,(e); the coefficients of the sensitivity d 2k = 0. These modes are due solely to 
the initial distributions of the displacements and velocities, i.e. the coefficients (P2k, $!$k (k = 1, 2, 
. . .). The required functions O,(e) can be represented in the form of an integral operator of v”(e) 
(of the acceleration of the carrier body) 

o,(e, [7, -1) =qn cosv,(e - e,) + J/, sinv,(e -0,) - 
V?l 

sinvJ6 - 7) d7, 
&?I 

o;(e, [f]) = de (2.4) 

Hence, a strong solution of boundary-value problems (1.8) exists and is unique if the function 
n”(e) is continuous, and the series C [(vn (p,)* + &] 
the solution can be represented in the form 

converges [l, 21. According to (2.1) and (2.4) 
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The term z. is due to the initial distributions cp. 4, while 2, is due to the “external kinematic” 
action q”(e). 

Substituting (2.5) into (1.9) we obtain the required integro-differential Cauchy problem with 

respect to the unknown variable r), which is to be determined later. Note that a similar approach in 

reducing the initial problem to an integro-differential Cauchy problem for investigating oscillatory 
systems with lumped and distributed parameters was applied in [3-51 to a hybrid system with 

lumped and distributed parameters in the form of a rectangular vessel with a stably stratified liquid. 

In a similar way we can consider the more-general problem when the elastic element is 
inhomogeneous: p = p(x) 2 pa > 0, (T = a(x ) 3 cro > 0. In this case, it is required to construct systems 

of eigenvalues {A,} and functions { 8, ([)},i(t,, orthogonal with weight p*(s). of the boundary-value 

problems corresponding to clamping conditions 1 and 2 

(o’(~) S’)‘-tAZp’([) z=o, o<ij< 1 
(7.19 

1) yo)=E:(l,=o; 2)~(O)=Z’(l)=O 

Here (T*, p* are the reduced characteristics of the elastic element. To derive the integro- 

differential Cauchy problem (1.9) it is necessary to obtain systems of eigenvalues and eigenfunctions 
of boundary value problems (2.6). There is a considerable literature devoted to constructing these, 

and powerful methods have been developed, which we obviously cannot review here. Further, the 

systems {A, ) 7 {M5)p*(~) are assumed to be known; note that the eigenfrequencies v,, = A,, _ /I 2 1. 
When constructing the equation for q(H) of the type ( 1.9) we must bear in mind that the term which 

takes into account the effect of the elastic element is equal to ~[a*(O)z’(e, 0) - rr”(l)z’(H, l)]. 

3. THE CONSTRIJCTION OF A STiZNDARD IN’I-E<;RO-DLFFERENTIi\I. CAUCHY 

PROBLEM IN THE CASE OF A QL:ASL-I.INEAK IX’I‘ERNAL. FORC‘E ANI) A WEAh 

EFFECT OF THE El.ASTI~‘ EL.EMENT 

We will consider the integro-differential Cauchy problem ( 1 .Y) and (2.S), represented in explicit 

Here the known function y and the difference kernel E of the integral operator have the form 

7(e) =&de, 0) - &(e, 1) = 2 x,(1 - COSA,)[~, c0sv,(e ~ e,) -t 
n= 1 

+ +,v;‘sinv,(O--e,>], I)cosX, =(---l)“, 2)cosh, =0 (3.2) 

E(B) = Z e,sinv,O, e, =d,(l -cash,), E(O)=0 
n=1 

Note that series (3.2) can be summed and expressed in terms of the initial functions (and their 

derivatives) p(t), I+!J(,$), specified in the range rE[O, l] and oddly continued; they turn out to be 
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2&vr-periodic in 8. Moreover, it follows from (3.1) that when II = y0 the motion of the rigid 
body (and the centre of mass of the system) will be uniform q= 77” + v*(e- 80), 82 60. If the 

external action II depends only on 0, i.e. II = II(e), Eq. (3.1) can be regarded as a linear integral 
equation of the Volterra type in the acceleration w = n**, having a unique solution w(0) [(il. The 
required variables 7, 7’ are obtained by integrating w(0), taking the initial conditions (3.1) into 
account. If II = II(6, n’), then by introducing the variable I, = q’ the order of the derivatives in the 
integro-differential Cauchy problem (3.1) can be reduced by one. In general, the integro- 
differential Cauchy problem (3.1) is equivalent to a system of three integral equations in n, v, w. 
Note also that in the cases when we can confine ourselves to considering a finite (usually small) 
number NZ 1 of modes of oscillation of the elastic element and neglect in (3.2) terms with numbers 
12 >N, the integro-differential Cauchy problem (3.1) can be reduced to a system of ordinary 
differential equations by differentiating with respect to 8 and eliminating the integrals, provided the 
functions II and j are smooth. 

Below we investigate the integro-differential Cauchy problem (3.1), (3.2) assuming that the 
external action II is the sum of a linear restoring elastic force and an arbitrary perturbation, periodic 
in 0 (see Fig. 1) 

n(e, 9 I), 0’) = -fiYn - no) + pP(we, 9 n, 1)‘) (3.3) 

Here R* = (c/~)/(~/~~~) is a constant which has the meaning of the square of the reduced 
frequency, c>O is the coefficient of elasticity of the restoring force, w is the reduced frequency of 
the external action, J_C is a small parameter (OX pd h< l), $I = @ is slow dimensionless time, and 
Q, = no(a) is the position of equilibrium, which can be assumed to be zero. We will further assume 
that the value of the frequency Q is of the same order of magnitude as the lowest eigenfrequencies of 
the elastic element vl, y , etc., i.e. of the order of unity. The parameter E = pflm will also be 
assumed, like p, to be small: O< ES ~a< 1. Note that in the limit when p = E = 0, Eq. (3.1) 
describes linear oscillations of the rigid body, despite the singularities of the changes of variables 
(1.7) and expression (3.3). 

By replacing the variables q, v = n’ by variables a, b of the Van der Pol type [3-51 

o=e0(9) +acosR!? +bsinf28 

v=a(-asinQ28 +bcosf28) 

we obtain a standard system in Bogolyubov form for the osculating variables a and b [7] 

(3.4) 

a’ = pr,(e, 9u, bj + fQ-‘[-@) +f] sinS28 

b’ = ~r~(19, 0, 9 b) + 0 [r(e) - 11 cos sze 

a(e,) =d” = PO - ~~~~~~ b(e,) =bO 3 V~/CTZ 

rtl = -mb(tqc0me - r(we, tj Q, U) sin s2e = r,(e, 8, a, b) 

Fb = -5271b(9 sin sze + r(oe, 6,7), U) c0ssze = rb(e, ,8, U, b) 

(3.5) 

In the expression for IY the variables 3, v are expressed in terms of 8, 6, a, b using Eqs (3.4). The 
function I, and together with it I,,, also, are doubly periodic, i.e. they have the frequency basis 
{o, 0). System (3.5) is unsuitable for using asymptotic methods of averaging, since the integral 
operator f is defined by the functions q”(e), for which there are no explicit formulae for replacing 
them in terms of the variables a, b, 8, 8 (q** can be expressed in terms of these and a*, b’). 
Attempts to use the formulae for integration by parts to obtain expressions in terms of lower 
derivatives (in terms of r)*, n, see [3-51) also meet certain difficulties, since the kernel -E(B) of the 
integral operator Z is non-differentiable: E(B) is a piecewise-continuous function while E(8) is a 
generalized function, of the periodic impulse Dirac a-function type [6]. Hence, we propose a more 
specific method, involving reducing the integro-differential Cauchy problem (3.5) to the form of a 
system of integral equations by integrating them with respect to 8 using the formulae of repeated 
integration [3--S]. 
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In fact, by integrating (3.5) with respect to H and taking the initial conditions into account wt” 
obtain 

Here L4fA Id>, 4,&t [ul) are integral operators of the variable v(B), for which we have the 
representation (3.4), i.e. we finally obtain the operators of a(@), h(8). Hence, we have obtained a 
system of integral equations (3.6) in the u~kno~fns a(@), b(8) in standard form [5. 71, corresponding 
to the integro-differential Cauchy problem (3.5). For a further approximate solution and analysis we 
can use the asymptotic approach of the method of averaging developed in [5] for the case of 
non-decaying periodic and almost (quasi-) periodic kernels of linear integral operators. 

We will now construct the averaged integral equations and, on the basis of these, the averaged 
differential equations of the first approximation. The small parameters /.L, E are further assumed to 
be related. Using the averaging procedure [5] we will distinguish two qualitatively different modes 
of oscillation, corresponding to (a) the presence of internal resonance (a= vk + where k 3 1 is a 
“small” value of the index), and (b) there is no internal resonance (a # Q ). These assumptions will 
be further refined in terms of the small parameters. Here the presence or absence of external 
resonance due to the external periodic action (with frequency o) is permitted. 

In conclusion, we emphasize the following extremely important point. The asymptotic solution of 
the Bogolyubov-standard system of the form X‘ = &Y(t, x), x(&) = _x’) reduces to the integration of 
the averaged system &’ = X,(s), where X,, is the average of X over t; ((7”) = x0. T = it. From the 
point of view of the theory of integral equations, we can set up two systems 

1 7 

x(t)=x” +e JX(t,,x(ti))dt1, l(7) =x0 + S&(E(~,))d7, 
6 70 

where T = et- I. In the case of an integro-differential Cauchy problem or an integral equation of the 
form 

f 
x’ (t) = ~1 X(t, fl, w(t), x(tl )fdt,, x(to) = x0 

to 

1 
x(t) =x0 + E j- Y(?, 11, x(r), X(f$))df, 

4, 

averaging over the inner argument tl and justifying the closeness of the solutions of the initial and 
averaged equations are extremely problematical. In general, the average of the function Y over tt 
does not exist (“resonance” [J-5]). If it exists, it does not follow from the simplified equations 
obtained that x is a slow variable [S], and its determination does not become essentially simpler. 
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4. ASYMPTOTIC ANALYSIS OF THE OSCILLATIONS OF A HYBRID SYSTEM IN THE 

RESONANT AND NON-RESONANT CASES 

We will consider different relationships between the small parameters p and E depending on the 
mode of oscillation [5]. 

4.1. A m-aged system in the resonant case 
The following relations are of interest in theory and practice 

st=~+U@), k=l,2,...; E=M’ 

B f [O,, O/p], 0 = const (e* - ljfl= l/G) 
(4-I) 

Relation (4.1) between p and E leads to the same order of magnitude of the perturbations [5]. 
Then the average values (Y, p of the variables II, b are described by two coupled integral equations 
[S] over a relatively narrow range of the slow time 6 

(4.2) 

I&(9, [II, 0) = lim L ,’ r&a(VU%B)~e 
*I”+- T e 0 

The remaining terms on the right-hand side of (3.6) (including the variable position of equilibrium 
Q = ~~(6)) make a contribution O(p) to the solution, i.e. we have the estimates [5] 

Ia‘(e,~)-(y(~))l+Ib(8,~)-B(9)1 <CM 

@ E [@*, @/PI, C = const (4.3) 

Note that according to (3.5) there may be relations between the frequencies w and Q, leading to 
additional terms in the mean I’& in (4.2). Further, by differentiating with respect to 6 (twice), Eqs 
(4.2) are reduced to a coupled system of two second-order ordinary differential equations in the 
slow time 6, 80=G?SO 

ar” = ar&%9 t (ari/&)cr’ + (aI$/afl)$ - (ekvk/4)cr (4.4) 

p” = a@&9 f (ar@a)a’ + (ari/apjp’ - (e&4)/3 

ar(&)) =ao, (w’(4p) = r&3,, f.20, bO) 

P(90) =bO, OVo) = r&b, a? bfJ) 

For a number of classes of functions r (i.e. I’a,b), admitting of inte~retation in terms of 
mechanics, system (4.4) can be completely integrated, in particular, if Z’,*,/&r, X&&?p are 
constants. If fz = IYz((6, cy), I’; = ra((6, p), Eqs (4.4) can be separated and, in the stationary case, 
topological and qualitative methods of investigation can be applied to them (phase-plane methods, 
see, for example, [S]). The Cauchy problem has been completely integrated [5] for the case when 
the perturbing non-linear additional term pr in (3.3) defined a cubic non-linearity of the restoring 
force (r = A4); the solution was obtained in terms of elliptic functions. Note also that the dynamic 
system (4.4) has a certain structure, the symmetry properties of which can be used to analyse it. 

It is interesting to note that the perturbing effect of the integral term is equivalent to a linear 
“restoring force”. Hence, when I’& = 
Ak = (ek vk/4)l” 

0, the variables oscillate harmonically with frequency 
, and the required solution 71, according to (3.4), is equal to (@, = 0) 
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g = q(O) + Acosphke ~o~tf28 - f) + O(p), 0 s e so/~ 
v = q’ = -AncOspAke sin(QB - <) t O(pj (I,<, 

cost =a’/A, sine =hO/A, A = (ao2 + ho*)“2 

Hence, the oscillations of the rigid body perform beats with a low frequency ~~1~ (p = -il,‘g) in 
dimensionless time 0, and the amplitude of the oscillations varies from a quantity of the order of 
unity to zero (quantities O(p)). It follows from (4.4) that the presence of an external periodic force 
r‘ = I?(w@) in the resonant case (w-n = Q) does not lead to an “unlimited” Iinear increase in the 
quantities @(I?), ~(~) due to the effect of the “restoring force”, produced by the elastic element. 1n 
order that an additional slow “build up” should occur, it is necessary to modulate the action I’. i.e. 
introduce a periodic dependence on 6: T’ = r( w@, A, 8). 

To reduce the system of integral equations (4.2) to the form of ordinary differential equations 
without assuming that faSp is differentiable with respect to 8, cy, p, one can use the following 
appraoch. By differentiating system (4.2) with respect to 8 once and introducing the new unknown 
variables p, q (p’ = CY, q’ = p), we obtain 

P”=l’l($ Pl, q')-- A?& p(S,)=O, p'(6,) =a0 

q” = r$(& p’, 4’) - ?2$$, 4(0,) = 0, 4’(9,) = b0 
6-t.o) 

Equations (4.6) differ considerably from (4.4) and are more compact in form. Together with (4.2) 
and (4.4) they make up the mathematical apparatus for ~tlvestigating the ~~s~illati~~ns of a hybrid 
system in the case of internal resonance. 

4.2. Averaged system in the non-rrxwzant case 
The oscillations of the rigid body are described by an integral equation with the following natural 

assumptions 

Wf~fO(fi) (Q=Vk+O(l)), k=l,2,...; j_I=E 

8 E [6,, e/e], 0 = const, 6 = fe 
(4.7) 

External resonance, due to a periodic perturbing action of arbitrary frequency w, as in Sec. -t. i . 
may or may not occur. Using the approach employed in [S]. we obtain the following system of 
integral equations of the first approximation, corresponding to (3.6) 

6 19 
a(@ =a0 + f r:(K, a(K), &K))dK + A f @(K)dK 

9, 8, 

p(9) = b” + p rl;(K, a(~), P(K)) dK - A Ja *(K)~K 64.8) 

6, 90 

The remaining terms in (3.6). including the terms in I’:.@, due to the variabiIity of the position of 

equilibrium n0(6) makes a contribution O(E) for B-E -I. By [5] we have the following estimate of 
the error between the solutions of the initial system of integral equations (3.6) and the averaged 
system (4.8) 

la(e,e) -~(~)I+I~(~,E)--P(~)II~cE 

eE[eo,c9/E], C=const 
(4.9) 

Unlike system (4.2) [see (4.4) and (4.6)) corresponding to the case of internal resonance, when 
there is no resonance, the system of integral equations (4.8) is equivalent to two first-order 
differential equations. which follows from (4.8) after a single differentiation 
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f-Y’ = m, a, P> + Izp, a(&) =a0 

8’ = r&t+, a,& - Aa, P(ao) = b0 (4.10) 

The main difference is that the effect of the integral term in (3.1) or (3.5) is equivalent to 
“gyroscopic forces”. Note that the coefficient A can be of arbitrary sign and, in particular, can equal 
zero. For a number of classes of perturbing actions, having a mechanical meaning, Cauchy’s 
problem (4.10) allows of a complete analytic and qualitative investigation. In particular, when 
(4.10) is stationary (time-independent), when Iz,P = lYz,p(a, p), phase-plane methods [7, 81 are 
applicable. If I:,@ = const (external resonance), the gyroscopic terms (like the restoring forces in 
Sec. 4.1) prevent an unlimited increase in (Y, p when A f 0; “build-up” in slow time is possible if the 
functions Ia*,p = I& (As) are periodic in 6. The case of non-resonant oscillations I,*,D = 0 is of 
interest in practice [4,5]. By (3.4) and (4.10) we obtain the expressions (&, = 0) 

7) = no(a) t a0 cos(!2 t EA) 8 + b” sin(S2 + EA) 8 + O(e) 

9 = -a’!2 sin(S1 t eA)\)e t b”S2 cos(i2 + EA) 0 + O(E) 

e E [O, OE-l], 0 = const 

(4.11) 

Hence, it follows that the effect of the elastic element reduces to a displacement of the frequency 
of oscillation of the unperturbed system by EA; there are no beats (see Sec. 4.1), and the amplitude 
is constant. The effect of a perturbing potential addition to the restoring force leads to a small, 
O(E), change in the frequency by a constant amount [5]. System (4.10) has certain structural 
properties and symmetry, which can be used to analyse it. 

In conclusion we note that the results obtained above can be employed to design systems of 
diagnostics (non-destructive testing) for analysing the functioning of an elastic element inside a 
closed cavity and inaccessible to direct observation. 
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